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Summary

Background—Whether machine-learning algorithms can diagnose all pigmented skin lesions as 

accurately as human experts is unclear. The aim of this study was to compare the diagnostic 

accuracy of state-of-the-art machine-learning algorithms with human readers for all clinically 

relevant types of benign and malignant pigmented skin lesions.

Methods—For this open, web-based, international, diagnostic study, human readers were asked 

to diagnose dermatoscopic images selected randomly in 30-image batches from a test set of 1511 

images. The diagnoses from human readers were compared with those of 139 algorithms created 

by 77 machine-learning labs, who participated in the International Skin Imaging Collaboration 

2018 challenge and received a training set of 10 015 images in advance. The ground truth of each 

lesion fell into one of seven predefined disease categories: intraepithelial carcinoma including 

actinic keratoses and Bowen’s disease; basal cell carcinoma; benign keratinocytic lesions 

including solar lentigo, seborrheic keratosis and lichen planus-like keratosis; dermatofibroma; 

melanoma; melanocytic nevus; and vascular lesions. The two main outcomes were the differences 

in the number of correct specific diagnoses per batch between all human readers and the top three 

algorithms, and between human experts and the top three algorithms.

Findings—Between Aug 4, 2018, and Sept 30, 2018, 511 human readers from 63 countries had 

at least one attempt in the reader study. 283 (55·4%) of 511 human readers were board-certified 

dermatologists, 118 (23·1%) were dermatology residents, and 83 (16·2%) were general 

practitioners. When comparing all human readers with all machine-learning algorithms, the 

algorithms achieved a mean of 2·01 (95% CI 1·97 to 2·04; p<0·0001) more correct diagnoses 

(17·91 [SD 3·42] vs 19·92 [4·27]). 27 human experts with more than 10 years of experience 

achieved a mean of 18·78 (SD 3·15) correct answers, compared with 25·43 (1·95) correct answers 

for the top three machine algorithms (mean difference 6·65, 95% CI 6·06–7·25; p<0·0001). The 

difference between human experts and the top three algorithms was significantly lower for images 

in the test set that were collected from sources not included in the training set (human 

underperformance of 11·4%, 95% CI 9·9–12·9 vs 3·6%, 0·8–6·3; p<0·0001).

Interpretation—State-of-the-art machine-learning classifiers outperformed human experts in the 

diagnosis of pigmented skin lesions and should have a more important role in clinical practice. 
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However, a possible limitation of these algorithms is their decreased performance for out-of-

distribution images, which should be addressed in future research.

Funding—None.

Introduction

Diagnosis of skin cancer needs specific expertise that might not be available in many clinical 

settings. Accurate diagnosis of early melanoma in particular demands experience in 

dermatoscopy, a non-invasive examination technique1 that improves diagnosis compared 

with examination with the naked eye.2 Dermatoscopy, which requires proper training and 

experience, is used widely by dermatologists,3 but also by general practitioners4 and other 

health-care professionals in areas where specialist dermatological services are not readily 

available.

The paucity of experts and the rising incidence of skin cancer in an aging population5 have 

increased the demand for point-of-care decision support systems that can diagnose skin 

lesions without the need of human expertise. There has been a long tradition of translational 

research involving machine learning for melanoma diagnosis based on dermatoscopic 

images.6–8 Although some automated diagnostic devices have been approved by the US 

Food and Drug Administration,9,10 such devices are not widely adopted in clinical practice 

for various reasons—for example, the devices are approved for melanocytic lesions only and 

they require preselection of lesions by human experts.

Recent advancements in the field of machine learning, particularly the introduction of 

convolutional neural networks, have boosted interest in this area of research.11 Codella and 

colleagues12 used ensembles of multiple algorithms to show melanoma recognition 

accuracies greater than those of expert dermatologists. Subsequently, Esteva and 

colleagues13 and Han and colleagues14 fine-tuned convolutional neural networks with large 

datasets of clinical images and observed dermatologist-level accuracy for general skin 

disease classification. Furthermore, Haenssle and colleagues15 reported expert-level 

accuracy of algorithms for dermatoscopic images of melanocytic lesions. However, in 

patients with severe chronic sun damage, up to 50% of pigmented lesions that are biopsied 

or excised for diagnostic reasons are non-melanocytic.16

Training of neural networks for automated diagnosis of pigmented skin lesions has been 

hampered by the insufficient diversity of available datasets and by selection and verification 

bias. We tackled this problem by collecting dermatoscopic images of all clinically relevant 

types of pigmented lesions, and created a publicly available training set of 10 015 images for 

machine learning.17 We provided this training set and a test set of 1511 dermatoscopic 

images to the participants of the International Skin Imaging Collaboration (ISIC) 2018 

challenge, with the aim of attracting the best machine-learning labs worldwide to obtain 

reliable estimates of the accuracy of state-of-the-art machine-learning algorithms. We 

planned and organised an open, web-based, reader study under the umbrella of the 

International Dermoscopy Society and invited their members to compare their diagnostic 

accuracy with that of algorithms. Therefore, the aim of this study was to compare the most 
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advanced machine-learning algorithms with the most experienced human experts using 

publicly available data.

Methods

Study design

For this open, web-based, international, diagnostic study, invitations to participate were first 

issued at the World Congress of Dermoscopy (June 14, 2018) and continued until Sept 28, 

2018. 3Gen (San Juan Capistrano, CA, USA) and HealthCert (Singapore) sponsored prizes 

(a dermatoscope and books) for the best participants. No other compensation was offered to 

readers. Cumulative numbers of registrations were correlated with specific mailings and 

social media posts to targeted groups (appendix p 1).

The study protocol was approved by the ethics review boards of the University of 

Queensland (Brisbane, QLD, Australia) and the Medical University of Vienna (Vienna, 

Austria), which waived written, informed consent for retrospectively collected and de-

identified dermatoscopic images. Before participation, human readers and participants of the 

ISIC 2018 challenge provided written consent to allow analysis of their ratings.

Procedures

We created a web-based rating platform accessible via username and password on which we 

ran the screening tests. Upon registration of participants (human readers), we collected 

information about age, sex, medical education, and years of experience with dermatoscopy. 

The basic functionality of the platform was to show an image together with a multiple 

choice question, which included seven predefined disease categories and a single correct 

answer. Before the main test, each reader had to complete four screening tests, which were 

used to stratify readers according to skill and to verify if self-reported experience matched 

actual skill.

The actual survey was done identically to the screening test, but used the test set of 1511 

unknown images. The ground truth of each lesion fell into one of seven predefined disease 

categories: intraepithelial carcinoma including actinic keratoses and Bowen’s disease; basal 

cell carcinoma; benign keratinocytic lesions including solar lentigo, seborrheic keratosis, 

and lichen planus-like keratosis; dermatofibroma; melanoma; melanocytic nevus; and 

vascular lesions. These seven disease categories comprise more than 95% of all pigmented 

lesions biopsied or excised for diagnostic reasons in clinical practice.16 As we did not expect 

human readers to rate all 1511 images, each reader received batches of 30 randomly selected 

images. Readers could repeat the survey with different batches at their own discretion. Each 

test set image was rated by a mean of 80 readers (range 43–184; 95% CI 78·6–80·7). We 

stratified random sampling in four ways to analyse potential effects of class distributions 

(appendix p 1). The first batch was balanced with regard to number of lesions from each 

class (balanced), the second batch had more benign lesions (benign; 25 [83%] of 30 lesions), 

the third more malignant lesions (malignant; 21 [70%] of 30 lesions), and all subsequent 

batches were randomly drawn from the test set without stratification (random).
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We randomly divided a master set of 11 210 dermatoscopic images into a training set (10 

015 images; 89·3%) and a test set (1195 images; 10·7%). The images were collected during 

a period of 20 years from two sites, the Vienna Dermatologic Imaging Research Group 

(ViDIR) at the Department of Dermatology at the Medical University of Vienna (Vienna, 

Austria), and the skin cancer practice of Cliff Rosendahl in Queensland (Capalaba, QLD, 

Australia). The set, which has been described previously,17 included consecutively collected 

images of pigmented lesions from different populations. Ground truth was routine pathology 

evaluation (>50% of all lesions), biology (>1·5 years sequential dermatoscopic imaging 

without changes), and expert consensus in some cases of common, straightforward, non-

melanocytic cases that were not excised. Controversial cases with ambiguous 

histopathological reports were excluded. The Austrian image set could be divided into the 

following three subgroups: ViDIR legacy (images captured before 2005 with analog cameras 

and archived as diapositives), ViDIR current (images captured after 2005 with the DermLite 

FOTO [3Gen] system or Delta 20 [Heine; Herrsching, Germany], and ViDIR MoleMax 

(images captured with the MoleMax HD system [Derma Medical Systems; Vienna, 

Austria]). The Australian image set included lesions from the patients of a primary care 

facility in an area with high skin cancer incidence. We added 316 images from other centres 

to the test set (external data), specifically from Turkey, New Zealand, Sweden, and 

Argentina, to assure diversity of skin types. Our original protocol did not mention test set 

images from other sources and did not specify the number of disease categories. These 

amendments were approved by the ethics board of the Medical University of Vienna on Dec 

4, 2018.

Predictions of the machine-learning algorithms were provided by the participants of the ISIC 

2018 challenge. We co-organised this challenge and an associated workshop18 at the 21st 

International Conference On Medical Image Computing & Computer Assisted Intervention, 

which took place on Sept 20, 2018, in Granada, Spain. Detailed descriptions of submissions 

can be found at the challenge website. We removed the two lowest scoring (1·4%) of 141 

submissions because they produced random predictions because of a formatting error. 

Machine-learning groups were allowed up to three technically distinct submissions to the 

challenge, resulting in multiple entries from some groups (there were a total of 139 

algorithms from 77 machine-learning labs). For each test case, the class (disease category) 

with the highest probability was regarded as the diagnosis given by the algorithm.

The two main outcomes were the differences in the number of correct specific diagnoses per 

batch between human readers and the top three algorithms, and between human experts and 

the top three algorithms. For a batch of lesions with equal distribution of classes, this 

difference corresponds to the difference in balanced multiclass accuracy, which is the mean 

sensitivity calculated for every class in a one-versus-all manner. We chose this metric 

because it ignores the bias of highly prevalent classes, such as nevi, and gives a good overall 

estimation of performance in a multiclass setting, as it indirectly measures false positive 

cases, which are missing in the directly measured true positives of their respective class. 

Secondary outcomes were differences regarding unbalanced batches.
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Statistical analysis

We aimed to include 500 human readers in the study. We used a one-sample t test to 

compare human readers and algorithms and determine whether the difference in the number 

of correct diagnoses in batches of 30 cases was different from 0. With an SD of 15%, the 

study had a power of 80% to detect a difference of 1·9% in the number of correct diagnoses 

at α=0·05.

Because the random batch could be attempted more than once, only the first attempt was 

included in the analyses of two main outcomes to avoid bias. We calculated the probability 

of a correct diagnosis for human readers and algorithms by summing the instances of correct 

diagnoses per lesion and dividing this by the number of readers or number of algorithms.

The probability of correct predictions per lesion, diagnostic values, and area under receiver 

operator characteristics curves were post-hoc exploratory analyses. For diagnostic values 

and confusion matrices, we used the majority vote of all ratings for each image. We 

calculated binary diagnostic values, such as sensitivity and specificity, in a one-versus-all 

manner. Receiver operating characteristic curves, areas under the curves, and their 95% CIs 

were calculated with pROC,19 and we compared areas under the curves with the method 

described by Delong and colleagues.20

Baseline characteristics are reported as n (%) or mean and 95% CI. All p values are two-

sided, and p<0·05 was regarded as significant. Bonferroni correction was used for all p 

values unless otherwise stated. Calculations and plotting were done with R version 3.4.0.21

Role of the funding source

There was no funding source for this study. The corresponding author had full access to all 

the data in the study and had final responsibility for the decision to submit for publication.

Results

Between Aug 4, 2018, and Sept 30, 2018, 951 (52·7%) of 1804 potential readers registered 

on the study platform finished all screening tests, and 511 (28·3%) readers from 63 countries 

had at least one attempt in the reader study (figure 1). 283 (55·4%) of 511 human readers 

were board-certified dermatologists, 118 (23·1%) were dermatology residents, and 83 

(16·2%) were general practitioners. The distribution of professions in participants of the 

reader study was similar to users who finished screening, but who did not participate 

(appendix p 1).

236 (46·2%) of 511 human readers were aged between 31 and 40 years and 321 (62·8%) 

were female. As the number of years of experience was the most important predictor of a 

high score in the screening tests, human readers with more than 10 years of experience were 

regarded as experts.

Human readers achieved a mean of 17·91 (SD 3·42) correct answers (of a possible 30) in the 

balanced batch, compared with 25·85 (1·83) correct answers for the top three machine-

learning algorithms (MetaOptima Technology Inc, DAISYLab, and Medical Image Analysis 
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Group, Sun Yat-sen University; mean difference 7·94, 95% CI 7·76–8·12; p<0·0001). 27 

human experts with more than 10 years of experience achieved a mean of 18·78 (SD 3·15) 

correct answers, compared with 25·43 (1·95) correct answers for the top three machine-

learning algorithms (mean difference 6·65, 95% CI 6·06–7·25; p<0·0001; figure 2). We 

found similar results for the top three human experts compared with the top three algorithms 

(appendix p 3). The mean difference between experts and the top three algorithms was 

smaller in benign, malignant, and random batches (5·39, 95% CI 4·64–6·15; 5·20, 4·21–6·18; 

and 3·76, 3·08–4·43, respectively; figure 2) compared with the balanced batch.

When comparing all human readers with all machine-learning algorithms, the algorithms 

achieved a mean of 2·01 (95% CI 1·97 to 2·04; p<0·0001) more correct diagnoses (17·91 

[SD 3·42] vs 19·92 [4·27]; appendix p 4). All algorithms had a mean 0·79 (95% CI 0·64 to 

0·94; p<0·0001) more correct diagnoses than did expert readers (figure 3). The difference 

between human readers and algorithms was greater in batches with more benign cases (mean 

difference 1·59, 95% CI 1·44 to 1·74; p<0·0001) and in random batches (mean difference 

1·06, 0·93 to 1·20; p<0·0001). In malignant batches, human experts outperformed algorithms 

(mean difference −0·54, −0·76 to −0·33; p<0·0001).

The probability for correct diagnosis of an image increased with the number of years of 

experience of the human reader and depended on the image source. For experts, the highest 

probability of a correct diagnosis was found in the ViDIR MoleMax dataset (91·4%, 95% CI 

90·1–92·7) and the lowest in the Australian dataset (60·1%, 56·0–64·1; appendix p 5). 

Compared with other image sets, the difference between experts and the top three algorithms 

was significantly lower for images that were collected from centres that did not provide 

images to the training set (human underperformance of 11·4%, 95% CI 9·9–12·9 vs 3·6%, 

0·8–6·3; p<0·0001).

The mean sensitivity across all classes was 79·2% (95% CI 64·4–94·0) for all human 

readers, 81·2% (66·1–96·3) for experts, and 88·5% (82·2–94·7; MetaOptima Technology 

Inc), 85·6% (79·1–92·0; DAISYLab), and 84·5% (78·5–90·5; Medical Image Analysis 

Group, Sun Yat-sen University) for the top three algorithms. The sensitivity for most 

malignant classes (melanoma, actinic keratosis, and Bowen’s disease) was higher for the top 

three algorithms than for experts (table; appendix p 7). We observed the largest difference 

between human experts and algorithms with regard to the sensitivity for intraepithelial 

carcinoma (51·2%, 95% CI 35·5–66·7 vs 90·7%, 77·9–97·4; table), which were commonly 

misdiagnosed by human readers, whereas the errors of algorithms were more evenly 

distributed across classes (appendix p 6).

The point indicating the mean sensitivity (0·76, 95% CI 0·74–0·77) and specificity (0·78, 

0·77–0·79) of human readers was situated below the receiver operating characteristic curves 

of the top three algorithms (figure 4). The area under the curve for the prediction of 

malignancy via vote frequency was 0·958 (95% CI 0·948–0·967) for human readers, and 

0·963 (0·953–0·973; p=0·46; MetaOptima Technology Inc), 0·971 (0·961–0·982; p=0·05; 

DAISYLab), and 0·958 (0·945–0·972; p=0·91; Medical Image Analysis Group, Sun Yat-Sen 

University) for the top three algorithms (no significant difference for all three comparisons).
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Discussion

We provide a state-of-the-art comparison of machine-learning algorithms with human 

readers for the diagnosis of all clinically relevant types of pigmented skin lesions using 

dermatoscopic images. Machine-learning algorithms outperformed human readers with 

respect to most outcome measures. In sets of 30 randomly selected lesions, the best 

machine-learning algorithms achieved a mean of 7·94 more correct diagnoses than the 

average human reader, and a mean of 6·65 more correct diagnoses than expert readers.

A common problem in human reader studies is the definition of experts. In a screening test, 

we compared the self-reported domain-specific experience of participants with their actual 

performance and found that self-reported years of experience reliably predicted domain-

specific expertise (appendix p 2). Unlike in similar studies,15,22,23 our test set included not 

only melanoma and nevi, but also non-melanocytic lesions. The primary task in our study 

was a multiclass problem with seven disease categories, and not just the simple binary 

problem of melanoma versus nevi. Therefore, our diagnostic study could be considered 

closer to a real-life situation than other studies in this field. Our test set is unique because of 

the large number of benign lesions that were not biopsied or excised. Inclusion of typical 

benign lesions avoids verification bias, which is a common limitation of diagnostic studies. 

Most benign lesions were nevi that we monitored for more than 18 months without any 

changes, which is as reliable a ground truth as pathological verification. The lesions were 

collected in two different settings—a tertiary referral centre in Europe and a skin cancer 

clinic in Australia. European patients are typified by a high number of nevi and a personal 

history of melanoma, and Australian patients by severe chronic sun damage. Human readers, 

including experts, achieved the lowest accuracy in the Australian dataset, which is not 

surprising since this dataset was more challenging and contained many equivocal lesions on 

chronic sun damaged skin that were biopsied to rule out malignancy. This set also contained 

difficult to diagnose melanomas and many pigmented intraepithelial carcinomas, which were 

often misdiagnosed by human readers. However, the top three algorithms performed equally 

well across all datasets, including the Australian set, and across all diagnoses, including 

pigmented intraepithelial carcinomas.

Overfitting to the distribution of images in the training set might explain the superior 

performance of algorithms. However, overfitting would lead to lack of generalisability. We 

anticipated overfitting and tried to quantify it by including a set of images from sources that 

did not provide images for the training set. As we expected, the accuracy of the top three 

machine-learning algorithms was lower in the set of new lesions, but still higher than the 

accuracy of human experts, which was also shown previously by Han and colleagues.14 This 

result indicates a potential limitation of algorithms for out-of-distribution images, which 

should be addressed in future research.

The low sensitivity of human experts for melanoma is striking and might be explained by the 

difficult test set, especially with regard to the Australian set, and by the framing of the task 

and presentation of images. A limitation of our study is that we did not provide additional 

data, for example, anatomical site, age, and sex, beyond dermatoscopic images, although 

these data were also lacking in the development of the algorithm. In a real-world situation, 
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human readers would consider the variability of lesions within a given patient. This 

approach, which is a variant of the so-called ugly duckling rule,24 increases sensitivity and 

specificity, but requires examination of the entire patient and not just single lesions. 

Therefore, our diagnostic study deviated from a real-world scenario and simulates a 

telemedical approach, which could be a future domain for machine-learning algorithms.

Another obstacle for human readers was that the lesions in the test set and training set were 

not standardised. The images were photographed with different devices and magnifications 

but, in reality, human readers could be used to a single device with fixed magnification and 

constant representation of colours. However, the variations in the dataset are representative 

of the variations observed in the field of skin imaging, which are a consequence of the high 

diversity of dermatoscopes and cameras, and the absence of applied standards.25 We asked 

human readers to rate lesions from the training set to get used to the diversity of the test set 

to mitigate this effect.

Although machine-learning algorithms outperformed human experts in nearly every aspect, 

higher accuracy in a diagnostic study with digital images does not necessarily mean better 

clinical performance or patient management.26 The metrics used in this study treated all 

diagnoses equally. The algorithms were trained to optimise the mean sensitivity across all 

classes, and did not consider that it is more detrimental to mistake a malignant for a benign 

lesion than vice versa. We deliberately chose a balanced metric because the test set was 

highly imbalanced towards nevi, and we wanted to penalise strategies that optimise accuracy 

by preferring predictions in favour of the most prevalent class. However, in practice, 

diagnosis of a melanoma as a basal cell carcinoma will be of no major clinical consequence 

for a patient with regard to primary diagnostic tests, because both lesions are usually excised 

or biopsied. Therefore, a metric that is based on the binary outcome of benign or malignant 

(or excise or dismiss) might be more clinically relevant. When we dichotomised the 

diagnostic classes into a benign and a malignant group and compared the accuracy of the 

majority vote of human readers with the top three algorithms, we found no difference in the 

area under the curve. Similar findings were reported in radiology, where so-called swarm 

intelligence improved the diagnostic accuracy of human readers.27

Although the lack of superiority in melanoma sensitivity of experts compared with the 

average human reader was outweighed by the superiority of experts for other diagnoses, this 

fact deserves an explanation. We hypothesise that, given their lower level of confidence, the 

non-expert readers tended to give false positives for melanoma, since the cost of a false 

negative decision on a possible melanoma is more severe than the cost of a false positive. 

The expert readers, who had a higher level of confidence, preferred to use their highest 

likelihood prediction.

Our study is a simulation and deviates from a real-life setting. In a real-life setting, 

evaluation of skin lesions is not limited to a timeframe of 20 s and human readers might 

make different decisions when faced with a patient in person. In future, it is probable that 

automated classifiers will be used under human guidance, rather than alone.28 Hence, it 

might be more appropriate to test the accuracy of automated classifying algorithms in the 

hand of human readers rather than to test classifiers and humans alone.
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Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

We searched the online databases Medline, arXiv, and PubMed Central using the search 

terms “melanoma diagnosis” or “melanoma detection” for articles published between Jan 

1, 2002, and Dec 15, 2017, in English. After screening 1375 abstracts, we found 90 

studies that investigated the accuracy of automated diagnostic systems for the diagnosis 

of melanoma. 57 studies provided enough data for a quantitative analysis and nine made 

direct comparisons with human experts. The summary estimate of the accuracy of 

machine-learning algorithms was on par with, but did not exceed, human experts. Many 

studies did not use an independent, external test set and we found no study that fully 

covered the heterogeneity of pigmented lesions by including all relevant types of non-

melanocytic lesions. Many studies were also prone to different types of biases, including 

selection and verification bias, and did not use publicly available data. Most studies 

focused on a single machine-learning algorithm and compared it with a small number 

(less than 100) of human readers.

Added value of this study

We provide a state-of-the-art comparison of the most advanced machine-learning 

algorithms with a large number of human readers, including the most experienced human 

experts. We included all types of clinically relevant pigmented skin lesions, not only 

melanoma and nevi, and algorithms and humans were tested with publicly available 

images, including images from sites with different populations and skin types. Most 

algorithms were also trained with a standard image set; hence, performance should be 

easily reproducible by other research teams. Our results show that state-of-the-art 

machine-learning algorithms outperform even the most experienced human experts.

Implications of all the available evidence

The results of our study could improve the accuracy of the diagnosis of pigmented skin 

lesions in areas where specialist dermatological service is not readily available, and might 

accelerate the acceptance and implementation of automated diagnostic devices in the 

field of skin cancer diagnosis.
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Figure 1: 
Numbers of registered and participating users on the study platform
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Figure 2: Mean differences in correct diagnoses of human experts versus the top three machine-
learning algorithms in batches of 30 images
Data are mean (95% CI).
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Figure 3: Mean difference between all human expert readers and all machine-learning 
algorithms for the number of correct diagnoses per batch
Error bars denote 95% CIs. Machine-learning groups were allowed up to three technically 

distinct test set submissions resulting in multiple entries for some groups. The performance 

of each algorithm vs humans is increased the further down the y axis they are listed.
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Figure 4: Receiver operating characteristic curves of the diagnostic performance for 
discrimination of malignant from benign pigmented skin lesions
Blue dots indicate single human sensitivities and specificities, the purple box indicates the 

mean, and the error bars around the mean indicate 95% CI.
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